
16 100/104 ED

VPPM VARIABLE DISPLACEMENT AXIAL-PISTON PUMPS SERIES 10

OPERATING PRINCIPLE

constant and 350 bar peak). Thanks to some particular design features, these pumps are able to bear high axial and radial loads on the shaft.

circuits.

 They are usually supplied with a ISO 3019/2 mounting flange, with the exception of the rear and intermediate pumps, if multiple pumps, which are only available with a SAE J744 2-hole flange and a SAE J744 splined shaft (see par. 19).

The VPPM pumps are variable displacement axial-piston pumps with variable swash plate, suitable for applications with open

They are available in three different frame sizes with maximum

The pump flow rate is proportional to the rotation speed and to the angle of the swash plate, which can be continuously modulated. The maximum and minimum angle can be limited

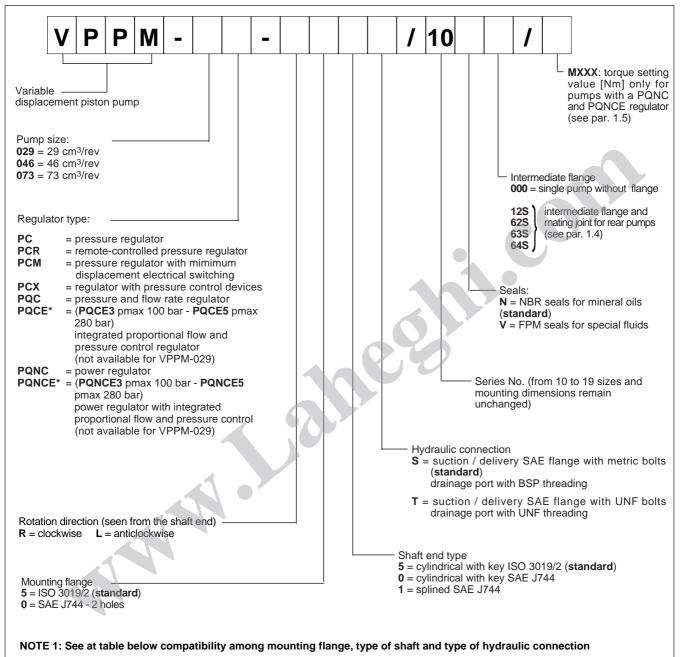
The pumps feature medium-high working pressures (280 bar

displacements up to 29, 46 and 73 cm³/rev.

mechanically via suitable regulating screws.

 They are available with eight different types of regulating control, each according to the application needs (see par. 7 ÷ 14).

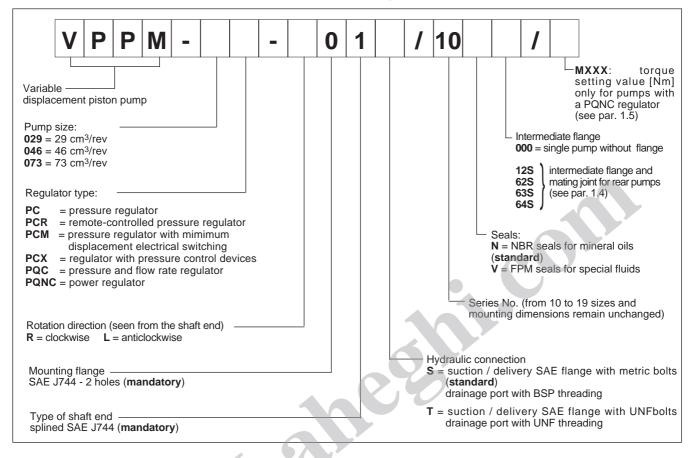
VPPM PUMP SIZE 029 073 046 cm³/rev 29 46 73 Maximum displacement Operating flow rate and pressures see table 3 - Performance Rotation speed see table 3 - Performance clockwise or anticlockwise (seen from the shaft side) Rotation direction axial load radial load 1000 1500 2500 Loads on the shaft Ν 6100 2500 3800 Maximum shaft torque see table 3 - Performance Hydraulic connection SAE flange fittings (see par. 21) Type of mounting (single pumps) with a ISO 3019/2 flange Oil volume of the pump body 0.9 dm³ 0.7 1.5 Mass (single pump empty) 18 24 35 kg °C $-15 \div +70$ Ambient temperature range HYDRAULIC SYMBOL °C Fluid temperature range $-25 \div +90$ see par. 2.2 Fluid viscosity range Recommended viscosity cSt 15 ÷ 35 see par. 2.3 Degree of fluid contamination


TECHNICAL SPECIFICATIONS

1 - IDENTIFICATION CODES

1.1 - Identification code for single and front pumps with a through output shaft

Compatibility among mounting flange, type of shaft and type of hydraulic connection


FLANGE CODE	SHAFT CODE			HYDRAULIC CON	INECTION CODE
	5	0	1	S	Т
5	yes	no	no	yes	no
0	no	yes	yes	yes	yes

VPPM pumps are supplied as standard with mechanical minimum and maximum displacements limit controls. These devices are not available for front and intermediate pumps with a through output shaft.

1.2 - Identification code for intermediate pumps with a through output shaft and rear pumps

1.3 - Identification code for double pumps

identification code + identification code 1st pump 2nd pump

1.4 - Identification code for intermediate flange and mating joint for pumps with a through output shaft

According to the pump to be coupled, it is necessary to define, into the identification code, the flange and mating joint type to be applied to the pump with a through output shaft.

The following table states the flange and joint reference code according to the different pump types to be pulled, stating also the possible coupling combinations.

identification code for an intermediate flange plus mating joint	intermediate flange	mating joint	pump to be mated		ombinations for bugh output shaf	
pids mating joint				029	046	073
12S	2-hole SAE J744 - type "A"	SAE J744 output shaft 16/32 D.P 9T	external gear group 2	YES	YES	YES
62S	2-hole SAE J744	SAE J744 output shaft	external gear group 3	NO	YES	YES
	type"B" 16/32 D.P 13T		VPPM-029	YES		
63S	2-hole SAE J744 type "B"	SAE J744 output shaft 16/32 D.P 15T	VPPM-046	NO	YES	YES
64S	4S 2-hole SAE J744 SAE J744 output shaft type "C" 12/24 D.P		VPPM-073	NO	NO	YES

N.B. For the flange type and dimensions see par. 21.

	ELECTRICAL MOTOR 4 POLES		I-029	VPPM	-046	VPPM	-073
Power [kW]	N [rpm]	torque [Nm]	p regulation start [bar]	torque [Nm]	p regulation start [bar]	torque [Nm]	p regulation start [bar]
3	1430	020	34	-	-	-	-
4	1425	026	46	026	30	-	-
5.5	1440	036	62	036	41	-	-
7.5	1450	050	84	050	56	050	36
9.2	1460	060	103	060	68	060	44
11	1455	072	124	072	82	072	53
15	1460	098	168	098	111	098	72
18.5	1460	-	-	122	137	122	89
22	1465	-	-	144	163	144	105
30	1470	-	-	-	-	196	143
37	1475	-	-	-	-	240	175

1.5 - Standardized torque values for PQNC and PQNCE regulators

1.6 - Identification examples

- a) 29 cm³/rev single pump with pressure regulator ISO mounting flange and shaft (standard) VPPM-029PC-R55S/10N000
- b) 46 cm³/rev single pump with pressure regulator with mimimum displacement electrical switching SAE mounting flange and SAE splined shaft

VPPM-046PCM-R01S/10N000

- c) 73 cm³/rev single pump with pressure control devices ISO mounting flange and shaft (standard) VPPM-073PCX-R55S/10N000
- d) 46 cm³/rev single pump with integrated proportional flow and pressure control regulator pressure regulation up to 280 bar VPPM-046PQCE5-R55S/10N000
- e) 46 cm³/rev single pump with power regulator set at 18,5 kW at 1460 rpm (torque = 122 Nm) VPPM-046PQNC-R55S/10N000/M122

f) 73 cm³/rev single pump with power regulator with integrated proportional flow and pressure control - power regulator set at 98 Nm - pressure regulation up to 280 bar

VPPM-073PQNCE5-R55S/10N000/M098

- g) 73 cm³/rev front pump with pressure regulator, ready to mate to a VPPM029 pump VPPM-073PC-R55S/10N62S
- h) double pump made of: 46 cm³/rev front pump with pressure and flow rate regulator - 29 cm³/rear pump with pressure regulator

VPPM-046PQC-R55S/10N62S + VPPM-029PC-R01S/N000

- i) triple pump made of:
- 73 cm³/rev front pump with flow rate and pressure regulator
 46 cm³/rev intermediate pump with pressure regulator
- 14 cm³/rev rear gear pump group 2

VPPM-073PQC-R55S/10N63S + VPPM-046PC-R01S/10N12S + GP2-0140R01F/10N

2 - HYDRAULIC FLUID

2.1 - Fluid type

Use mineral oil based hydraulic fluids with anti-foam and antioxidant additives according to the DIN 51524 norm.

For use with other types of fluid, keep in mind the limitations shown in the following table or consult our technical department for authorization of use.

FLUID TYPE	NOTES
HFC (water glycol solution with proportion of water ≤ 40 %)	 The performance ratings shown in the table in par. 3 must be reduced as follows: maximum continuous pressure: 200 bar max. rotation speed: VPPM-029 = 2100 rev/min VPPM-046 = 2000 rev/min VPPM-073 = 1700 rev/min The suction pressure must be lower than 0,8 absolute bars (-0,2 relative bars) The fluid maximum temperature must be lower than 50°C.
HFD (phosphate esters)	Such fluids do not require any particular performance limitation. It is suggested to operate with continuous duty pressures not higher than 240 bars.

2.2 - Fluid viscosity

The operating fluid viscosity must be within the following range:

minimum viscosity	10 cSt	referred to a maximum temperature of 90 °C for the drainage fluid
optimum viscosity	15 ÷ 35 cSt	referred to the operating temperature of the fluid in the tank
maximum viscosity	1000 cSt	limited only to the cold start-up of the pump, which has to be carried out with the plant at
		minimum pressure.

When selecting the fluid type, be sure that the true viscosity is within the range specified above at the operating temperature.

2.3 - Degree of fluid contamination

The maximum degree of fluid contamination must be according to NAS 1638 class 9; therefore the use of a delivery or return filter with $\beta_{20} \ge 75$ is suggested.

A degree of maximum fluid contamination according to NAS 1638 class 7 is recommended for optimum endurance of the pump. Hence, the use of a filter with $\beta_{10} \ge 100$ is recommended.

In the event that the filter is installed on the suction line, be sure that the pressure at the pump inlet is not lower than the values specified in the table of par. 3.

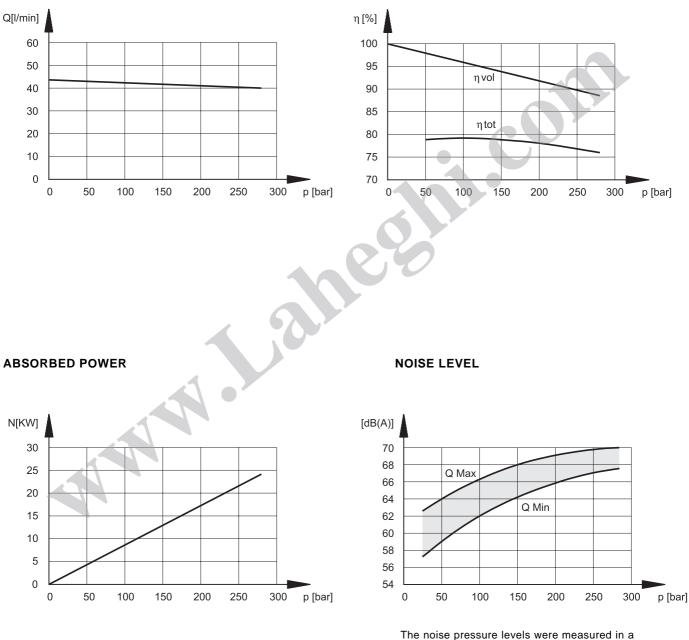
The suction filter must be equipped with a by-pass valve and, if possible, with a clogging indicator and should be oversized to avoid cavitation problems.

3 - PERFORMANCE RATINGS (measured with mineral oil with viscosity of 36 cSt at 50°C)

PUMP SIZE			029	046	073		
Maximum displac	cement		29	46	73		
Maximum	at 1500 rev/min	l/min.	43.5	69	109.5		
flow rate	at the max. rotation speed	1/11111.	87	119.6	160.6		
Input pressure	min	bar		- 0.2	·		
	max	Dai		24			
Max.	continuous		280				
delivery	intermittent (note 1)	bar	315				
pressure	peak		350				
Max. pressure on	the drainage port	bar	0.5				
Max. power	at 1500 rev/min	kW	19.9	31.6	50.1		
(with $\Delta p = 280$ bar)	at the max. rotation speed		39.8	54.7	73.5		
Max. absorbed to	$\Delta p = 100 \text{ bars}$	Nm	46.2	73.2	116.2		
	$\Delta p = 280 \text{ bars}$	INITI	129.3	205.1	325.5		
Moment of inertia on the shaft		kgm ²	0.0020	0.0030	0.0080		
Max. rotation spe displacement	ed with maximum (note 2)	rev/min	3000	2600	2200		

The pressure values stated in the table are to be understood as relative ones

- NOTE 1: Allowed intermittent duty pressures with a duration equal to 10% of the working time (e.g. 6 seconds for each minute)
- NOTE 2: Values referring to a zero bar pressure (relative) on the suction port



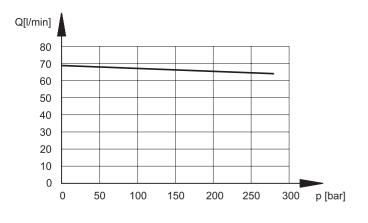
VOLUMETRIC AND TOTAL EFFICIENCY

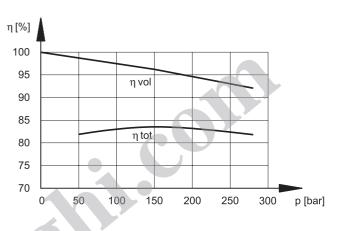
4- VPPM029 PUMP CHARACTERISTIC CURVES (values obtained with mineral oil with viscosity of 36 cSt at 50°C)

The diagram curves were measured with a pump rotation speed of 1500 rev/min.

FLOW RATE/PRESSURE CURVES

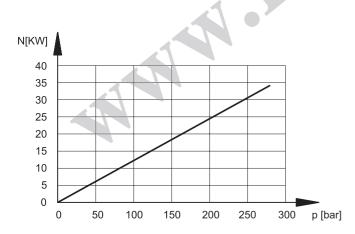
semi-anecoic room, at a distance of 1 m from the pump and with a tolerance of $\pm 2 \text{ dB}(A)$. The values shown must be reduced by 5 dB(A) if they are to be considered in a completely anecoic room.

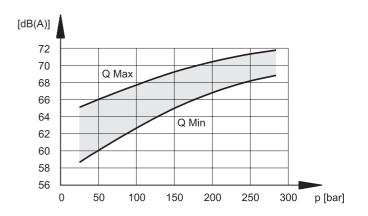

16 100/104 ED



5- VPPM-046 PUMP CHARACTERISTIC CURVES (values obtained with mineral oil with viscosity of 36 cSt at 50°C)

The diagram curves were measured with a pump rotation speed of 1500 rev/min.


FLOW RATE/PRESSURE CURVES



VOLUMETRIC AND TOTAL EFFICIENCY

ABSORBED POWER

NOISE LEVEL

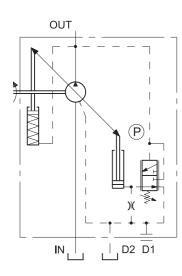
The noise pressure levels were measured in a semi-anecoic room, at a distance of 1 m from the pump and with a tolerance of $\pm 2 \text{ dB}(A)$. The values shown must be reduced by 5 dB(A) if they are to be considered in a completely anecoic room.

6- VPPM-073 PUMP CHARACTERISTIC CURVES (values obtained with mineral oil wiith a viscosity of 36 cSt at 50°C)

The diagram curves were measured with a pump rotation speed of 1500 rev/min.

FLOW RATE/PRESSURE CURVES **VOLUMETRIC AND TOTAL EFFICIENCY** η[%] Q[l/min] ηvol ηtot p [bar] p [bar] ABSORBED POWER NOISE LEVEL [dB(A)] N[KW] Q Max Q Min p [bar] p [bar] The noise pressure levels were measured in a

semi-anecoic room, at a distance of 1 m from the pump and with a tolerance of $\pm 2 \text{ dB}(A)$. The values shown must be reduced by 5 dB(A) if they are to be considered in a completely anecoic room.


16 100/104 ED

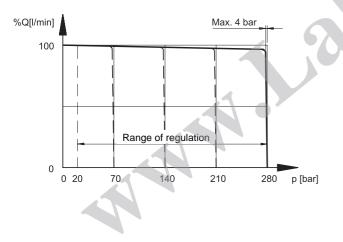
7- PRESSURE REGULATOR: PC

FUNCTIONAL DIAGRAM

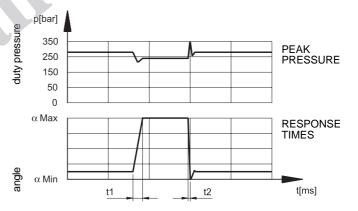
The PC pressure regulator keeps the pressure at a constant set level in the circuit, thus adjusting automatically the pump flow rate according to the real need of the system.

The desired pressure can be set by manually adjusting the P regulation valve.

FEATURES OF THE PC REGULATOR:


- pressure regulating range \bigcirc = 20 ÷ 350 bars

- default setting P = 280 bars


7.1- CHARACTERISTIC CURVES OF THE PC REGULATOR (values obtained with mineral oil with a viscosity of 36 cSt at 50°C)

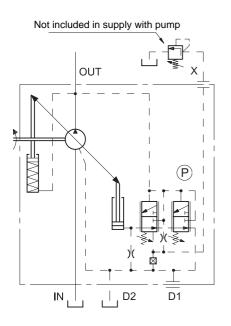
The diagram curves were measured with a pump rotation speed of 1500 rev/min and an oil temperature of 50°C.

FLOW RATE/PRESSURE FEATURE

RESPONSE TIMES AND PEAK PRESSURE

t1 = response time for a change from a min. to a max. displacement. t2 = response time for a change from a max. to a min. displacement.

The values stated in the table are obtained from the opening until the instant the delivery level is achieved, by using a maximum pressure valve set at 350 bars for a load simulation, placed at a distance of 1 m from the pump delivery port.


PC pressure regulator set at 280 bars

pump size	t1 [ms]	t2 [ms]	
029	30	20	
046	45	25	
073	50	30	

8- REMOTE-CONTROLLED PRESSURE REGULATOR: PCR

FUNCTIONAL DIAGRAM

The PCR regulator, apart from limiting the line maximum pressure (Pvalve), allows a remote-control of the device via a remote control connected to the X port (typical application for submerged pumps). In case a pressure regulating valve is used for the remote-control, it is suggested to use a direct operated valve with a size suitable to 1,5 l/min pilot flow rate.

N.B. The maximum length of the connection between the valve and the pump X port must not be longer than 2 m.

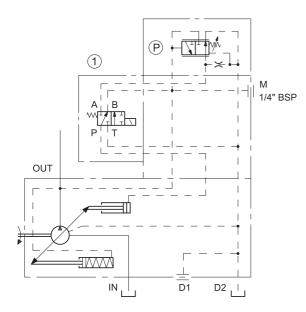
PCR FEATURES:

- pressure regulating range $P = 20 \div 350$ bars
- default setting (P) = 280 bars
- remote-regulated pressure range = $14 \div 315$ bars
- flow rate available on the X port for the remote-control = about 1,5 l/min

8.1- CHARACTERISTIC CURVES OF THE PCR REGULATOR (values obtained with mineral oil wiith a viscosity of 36 cSt at 50°C)

The diagram curves were measured with a pump rotation speed of 1500 rev/min and an oil temperature of 50°C.

%Q[l/min] 100 Max. 4 bar 100 Range of regulation 0 0 14 70 140 210 280 p [bar]


FLOW RATE/PRESSURE FEATURE

9- PRESSURE REGULATOR WITH MINIMUM DISPLACEMENT ELECTRICAL SWITCHING: PCM

FUNCTIONAL DIAGRAM

The PCM pressure regulator allows, by means of a suitable solenoid valve, the electrical switching of the pump displacement from the maximum to the minimum (or zero) value.

The solenoid valve is installed on the pump regulator directly and is to be ordered separately.

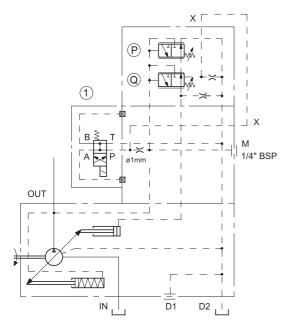
This function is useful for:

- pump unloading at the start-up
- performing fast-slow movements, by switching the pump displacement from the maximum to a reduced value, setted with the relevant limiting screw (see par. 16 17 18).

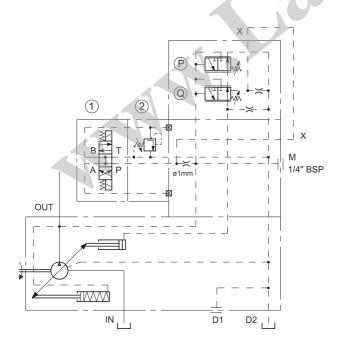
PCM FEATURES:

- solenoid switching valve 1 = DS3-TA23 (to be ordered separately see cat. 41 150)
- solenoid valve OFF = minimum displacement
- delivery pressure with solenoid valve OFF = 6 bar
- solenoid valve ON = max displacement and delivery pressure set on regulator (P) .
- pressure regulating range (P) = $20 \div 350$ bar with solenoid valve ON
- default setting (P) = 280 bar

NOTE: For PCM regulator characteristic curves see PC diagrams, par. 7.1.


AN A

10- REGULATOR WITH PRESSURE CONTROL DEVICES: PCX


10.1 - Electrical unloading

FUNCTIONAL DIAGRAM

10.2 - Two pressure settings + unloading

FUNCTIONAL DIAGRAM

The PCX regulator, mated to a suitable two-position solenoid valve, allows the electrical switching of the pump displacement in null condition and with minimum delivery pressure.

This function is useful for the pump unloading at the start-up or to operate at minimum pressure in the system during the machine cycle pause, with considerable energy saving.

The pressure switching is made by means of a solenoid valve (to be ordered separately) installed on the pump regulator directly.

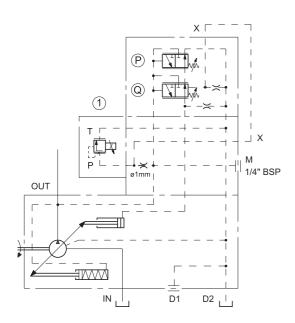
PCX FEATURES (electrical unloading):

- solenoid switching value ① = DS3-SA2 (to be ordered separately see cat. 41 150)
- solenoid valve OFF = pump at null displacement and delivery pressure = 20 bar
- solenoid value ON = maximum displacement and delivery pressure set on regulator P
- pressure regulating range $(P) = 20 \div 350$ bar
- default setting \mathbb{P} = 280 bar

This type of regulator allows to select, by means of a three-position solenoid valve, two different working pressures; it allows also the pump unloading.

The solenoid value 1 and the relief value 2 for the intermediate pressure setting are directly installed on the pump regulator and they are to be ordered separately.

PCX FEATURES (two pressure settings + unloading):


- solenoid switching value 1 = DS3-S2 (to be ordered separately see cat. 41 150)
- solenoid valve OFF = pump unloading delivery pressure = 20 bar
 solenoid side "a" ON = maximum displacement and delivery
- pressure set on relief valve ② (intermediate value)
- solenoid side "b" ON = maximum displacement and delivery pressure set on regulator P (maximum value)
- pressure relief valve ② = MCD*-SBT (to be ordered separately see cat. 61 200)
- pressure regulating range ② = MCD3-SBT 20 ÷ 100 bar MCD5-SBT 20 ÷ 250 bar
- pressure regulating range \bigcirc = 20 ÷ 350 bar
- default setting P = 280 bar

NOTE: For PCX regulators characteristic curves (with two pressure settings + unloading functions), see PC regulator diagrams, par. 7.1.

10.3 - Pressure regulation with electric proportional control

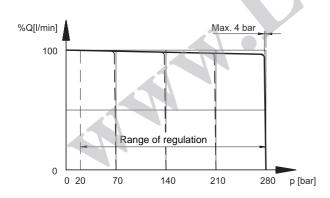
FUNCTIONAL DIAGRAM

The PCX regulator mated with a proportional pressure relief valve, allows a continuous control and modulation of the system pressure.

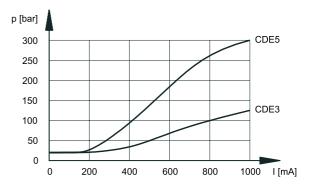
The proportional pressure relief valve (to be ordered separately) is installed on the pump regulator directly.

PCX FEATURES (proportional pressure regulation):

- pressure regulating range \bigcirc = 20 ÷ 350 bar
- default setting (P) = 280 bar
- proportional pressure relief value 1 = CDE* (to be ordered separately see cat. 81 200)
- proportional pressure regulating range : CDE3 20 ÷ 100 bar CDE5 20 ÷ 280 bar


Hysteresis = < 5% di p nom Repeatability = $< \pm 2\%$ di p nom

Electronic control units for proportional pressure relief valve: EPA-M110 (see cat. 89 220) - UEIK-11 (see cat. 89 300)


10.3.1- CHARACTERISTIC CURVES (values obtained with mineral oil wiith a viscosity of 36 cSt at 50°C)

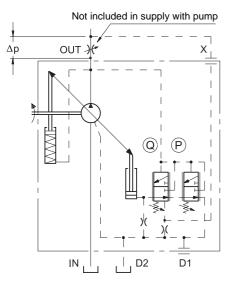
The diagram curves were measured with a pump rotation speed of 1500 rev/min and an oil temperature of 50°C.


FLOW RATE/PRESSURE FEATURE

CURRENT/PRESSURE FEATURE

RESPONSE TIME

The response times are obtained with a VPPM-046 pump, by changing the reference signal (V Ref)on the proportional valve in order to have a line pressure variation from 50 to 150 bar and vice versa, with an oil volume of 5lt.

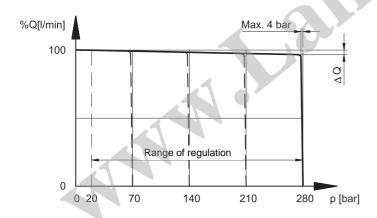

t1 = 80 ms (response time for an increasing pressure change) t2 = 60 ms (response time for a decreasing pressure change)

11 - FLOW RATE AND PRESSURE REGULATOR: PQC

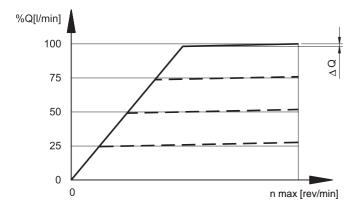
FUNCTIONAL DIAGRAM

This regulator, apart from regulating the pressure (as for the PC model), allows the pump flow rate to be regulated according to the Δp pressure drop measured on either side of a throttle valve installed on the user line. The connection pipe between the X port and the flowline downstream the restrictor (or valve) must always be made (customer charge).

PQC FEATURES:


- pressure regulating range $(P) = 20 \div 350$
- default setting (P) = 280 bars
- differential pressure regulating range $\mathbb{Q} = 10 \div 30$ bars
- default setting = 14 bars
- Min. discharge head = 18 ± 2 bars

(with a zero flow rate , X discharge pilot and with a default @setting of the differential regulator)

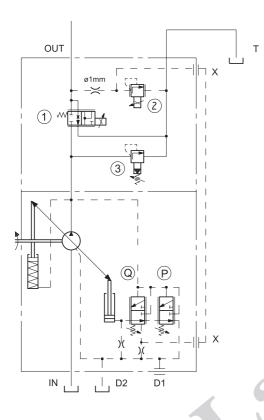

11.1- CHARACTERISTIC CURVES OF THE PQC REGULATOR (values obtained with mineral oil with a viscosity of 36 cSt at 50°C)

The diagram curves were measured with a pump rotation speed of 1500 rev/min and an oil temperature of 50°C.

FLOW RATE/PRESSURE FEATURE

FLOW RATE/ROTATION SPEED STATIC FEATURE

Flow variation between minimum and maximum pressure with pump set at max displacement


pump size	∆Qmax [l/min]
029	0.9
046	1.7
073	2.5

12 - INTEGRATED PROPORTIONAL FLOW AND PRESSURE CONTROL REGULATOR: PQCE

FUNCTIONAL DIAGRAM

This regulator allows an independent regulation of the pump flow and pressure, both with an electric proportional control.

The pump flow is regulated through the proportional valve 1 which operates directly on the pump delivery, while the system pressure is controlled by means of the proportional relief valve 2 working as a pilot stage of the differential regulator 0.

The maximum system pressure is limited by the regulator (P). The regulator is also equipped of a built-in pressure relief valve (3), with manual adjustment, which limits the pressure peak due to quick flow variations in the system.

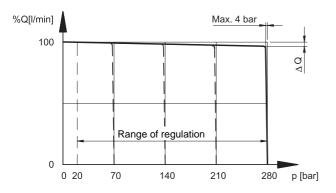
PQCE FEATURES

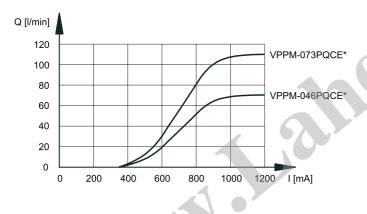
- pressure regulating range $(P) = 20 \div 350$ bar
- default setting (P) = 280 bar
- differential pressure regulating range \bigcirc = 10 ÷ 30 bar
- default setting = 14 bar
- proportional pressure regulating range:
 20 ÷ 100 bar (for VPPM-*PQCE3 pump)
 20 ÷ 280 bar (for VPPM-*PQCE5 pump)
- proportional flow regulating range:
- 0 ÷ 69 l/min (for VPPM-046 PQCE* pump)
- 0 ÷ 109,5 l/min (for VPPM-073 PQCE* pump)

PERFORMANCES AND ELECTRICAL CHARACTERISTICS

	FLOW REGULATION	PRESSURE REGULATION ②	
Hysteresis	< 6% of Q max	< 5% of nom p	
Repeatability	< ± 2% of Q max	< ± 2% of nom p	
Nominal voltage	24 [Vcc]	20 [Vcc]	
Coil resistance (at 20°C)	16,7 <u>[</u> Ω]	18,5 [Ω]	
nominal	1,11 [A]	0,7 [A]	
Current maximum	1,20 [A]	0,82 [A]	
Electromagnetic compatibility (EMC)		EN 50081 - 1 EN 50082 - 2	
Protection to atmospheric agents	IP 6	5	
Electronic control units for		see cat. 89 220)	
proportional valves	UEIK-12 (see cat. 89 300)	DEIN-11 (See Cal. 89 300)	

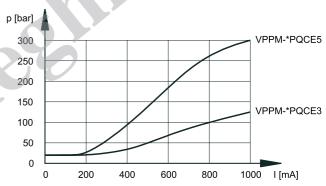
In the case of using the EPA-M3210 double channel electronic control unit, connect the proportional flow control valve to the channel 1 and the proportional pressure relief valve to the channel 2.




12.1- CHARACTERISTIC CURVES OF THE PQCE REGULATOR (values obtained with mineral oil wiith a viscosity of 36 cSt at 50°C)

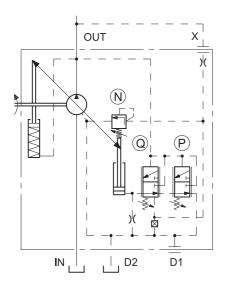
The diagram curves were measured with a pump rotation speed of 1500 rev/min and an oil temperature of 50°C.

FLOW RATE/PRESSURE FEATURE


CURRENT/FLOW FEATURE

Flow variation between minimum and maximum pressure with pump set at max displacement

pump size	∆Qmax [l/min]
046	1,7
073	2,5

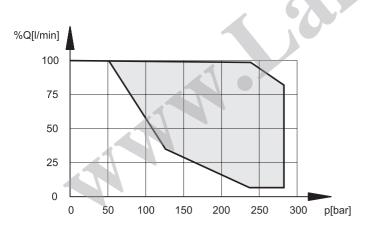

CURRENT/PRESSURE FEATURE

13 - POWER REGULATOR: PQNC

FUNCTIONAL DIAGRAM

Such regulator keeps the pump torque at a constant level by changing the displacement according to the delivery pressure, so that the ratio $p \ge Q$ (absorbed power) remains unchanged. The functions limiting the (P) maximum pressure and regulating the (Q) flow rate are always present, if a restrictor has been installed on the user line.

In the 1/8" BSP coupling supplied for the X port, there is a restrictor of \emptyset 0,8 orifice. **Note**: The connection pipe between the X port and the pump outlet must always be made (customer charge).

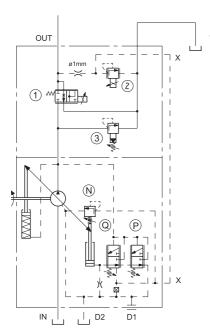

PQNC FEATURES:

- pressure regulating range \bigcirc = 20 ÷ 350
- default setting (P) = 280 bars
- differential pressure regulating range \mathbb{Q} = 10 ÷ 30 bars
- default setting = 14 bars
- min. discharge head = 18 ± 2 bars (with a zero flow rate , X discharge pilot and with a default@setting of the differential regulator)
- the power regulator is factory set. The setting value has to be specified with the order, by stating into the identification code the Nm torque value (see par. 1).
- Start of the regulation: see values at table of par. 1.5

13.1- CHARACTERISTIC CURVES OF THE PQNC REGULATOR (values obtained with mineral oil wiith a viscosity of 36 cSt at 50°C)

The diagram curves were measured with a pump rotation speed of 1500 rev/min and an oil temperature of 50°C.

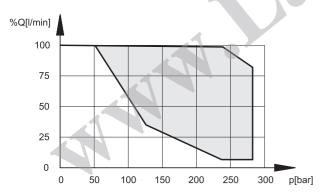
FLOW RATE/PRESSURE FEATURE



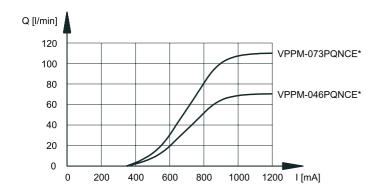
14 - POWER REGULATOR WITH INTEGRATED PROPORTIONAL FLOW AND PRESSURE CONTROL: PQNCE

FUNCTIONAL DIAGRAM

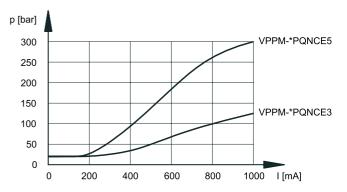
This system combines all the functions of the constant power control as a standard PQNC regulator, and moreover it allows the independent proportional regulation of the pump flow and pressure at values behind the power curve characteristic set on the regulator $\widehat{\mathbb{N}}$.


PQNCE FEATURES

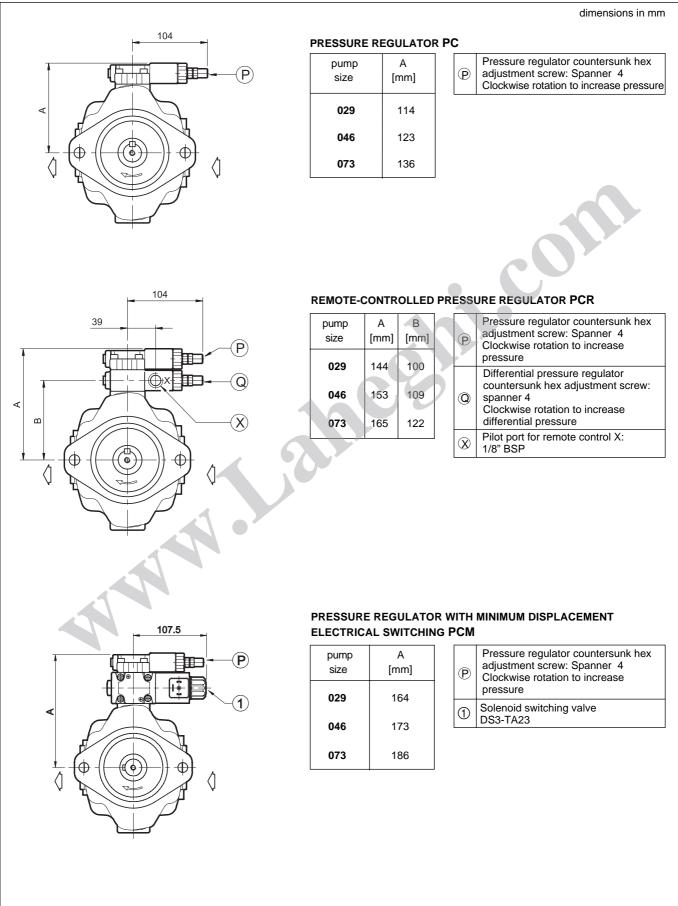
For technical characteristics and settings of PQNCE regulator, see par. 13.

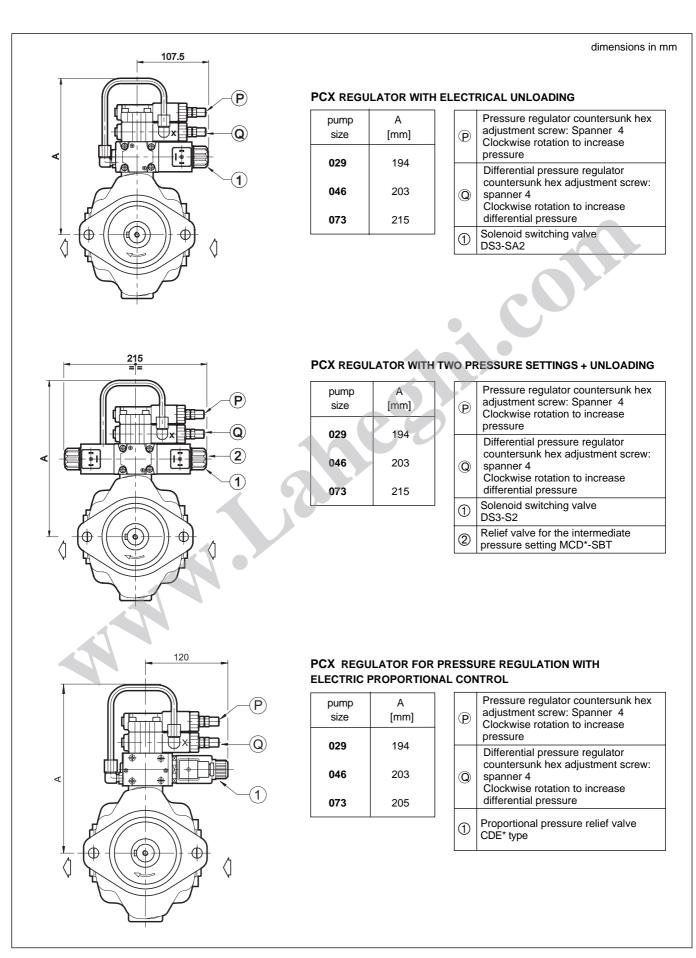

14.1- CHARACTERISTIC CURVES OF THE PQNCE REGULATOR (values obtained with mineral oil wiith a viscosity of 36 cSt at 50°C)

The diagram curves were measured with a pump rotation speed of 1500 rev/min and an oil temperature of 50°C.

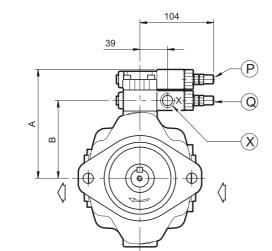

FLOW RATE/PRESSURE FEATURE

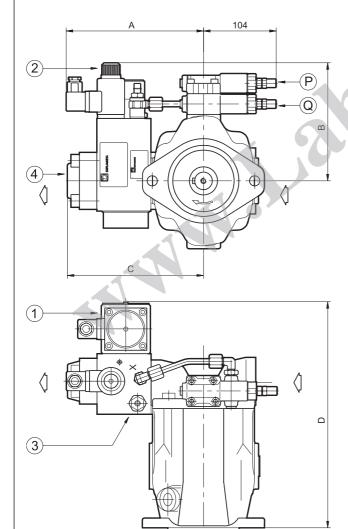
CURRENT/FLOW FEATURE


CURRENT/PRESSURE FEATURE



15 - REGULATOR OVERALL DIMENSIONS

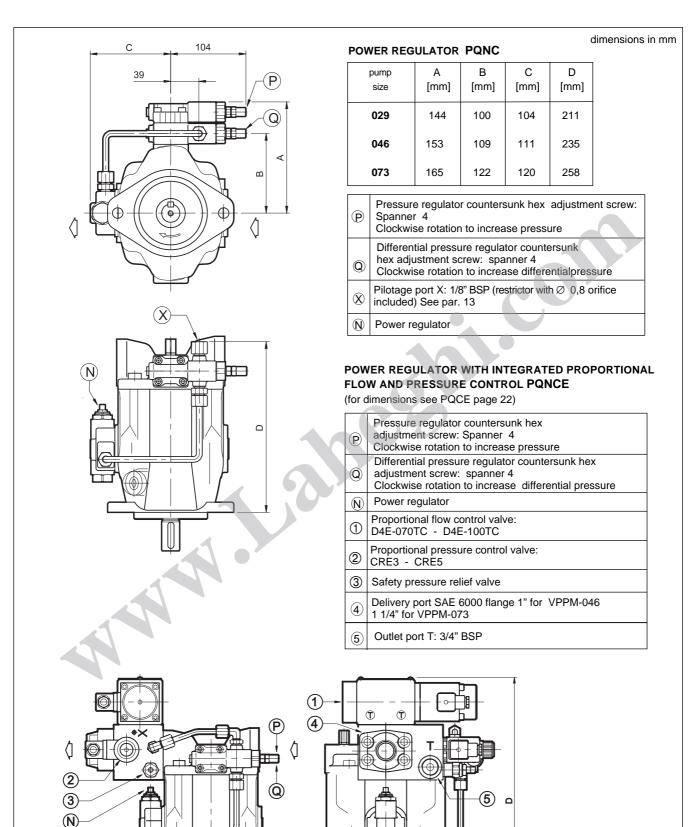




dimensions in mm

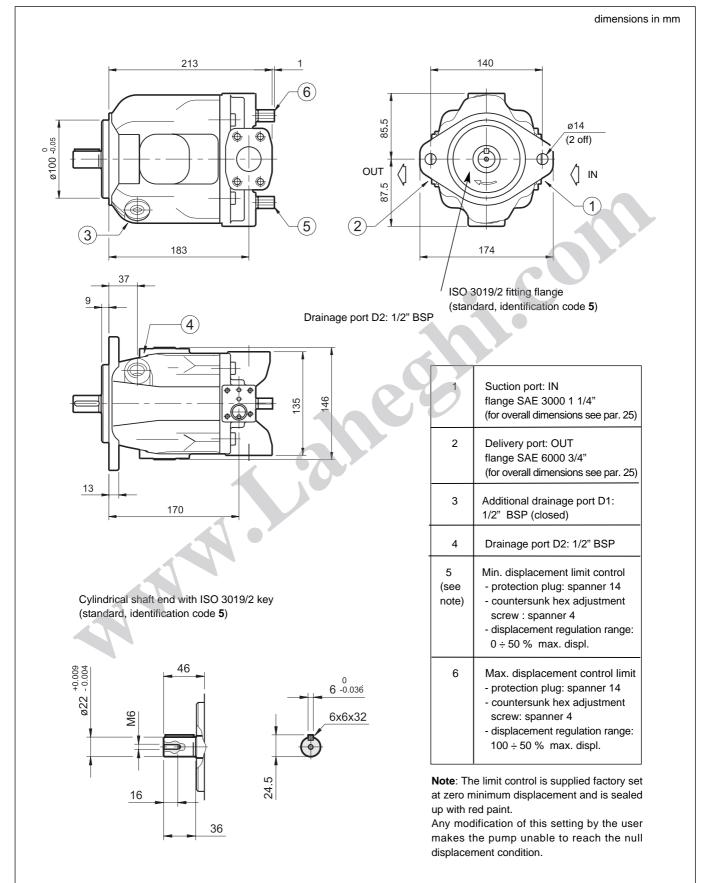
FLOW RAT		PRES	SUR	ERE	EGULATOR PQC
pump size	A [mm]	B [mm]		Ð	Pressure regulato adjustment screw Clockwise rotatior
029	144	100			pressure
023	144	100			Differential press
046	153	109		Q	countersunk hex spanner 4 Clockwise rotation
073	165	122			differential pressu
				\otimes	Pilotage port X: 1/

B [mm]		P	Pressure regulator countersunk hex adjustment screw: Spanner 4 Clockwise rotation to increase
100			pressure
100			Differential pressure regulator
109			countersunk hex adjustment screw: spanner 4
		Q	Clockwise rotation to increase
122			differential pressure
		\otimes	Pilotage port X: 1/8" BSP (see par. 11)

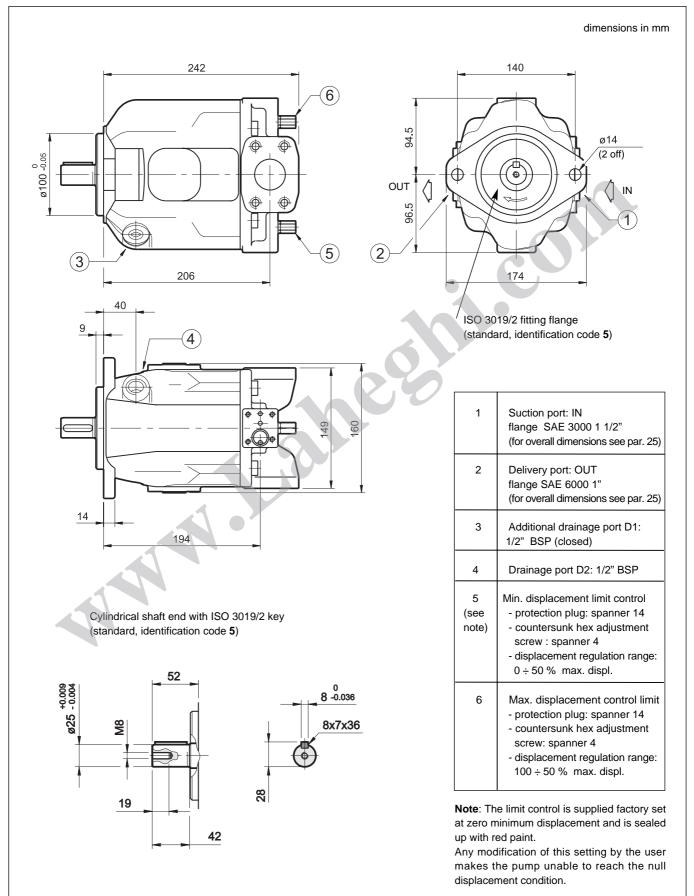

PQCE REGULATOR WITH INTEGRATED PROPORTIONAL FLOW AND PRESSURE CONTROL

pump	A	B	C	D
size	[mm]	[mm]	[mm]	[mm]
046	196	169	194	320
073	206	174	207	350
073	206	174	207	350

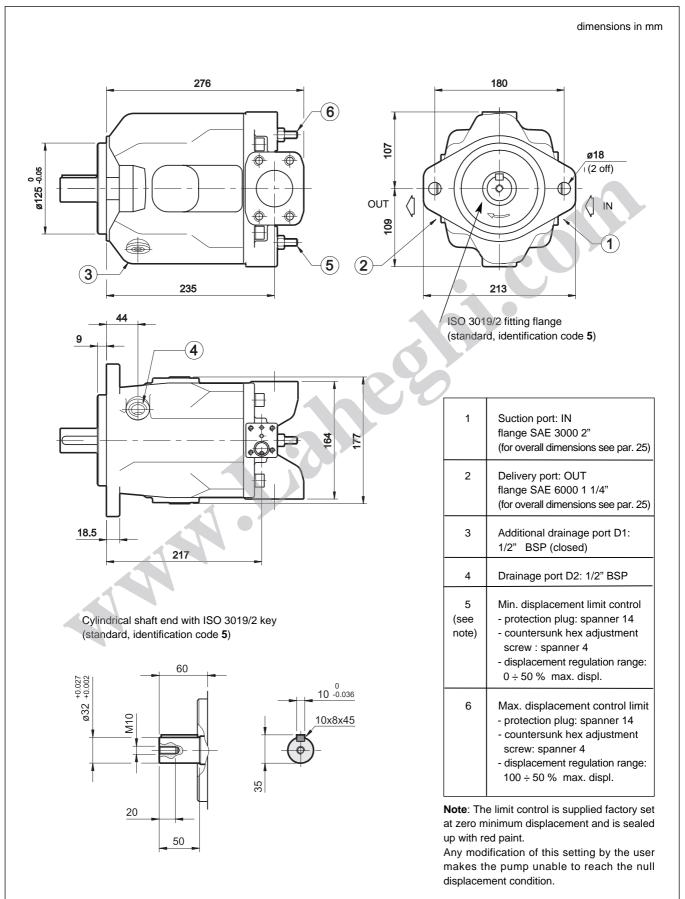
P	Pressure regulator countersunk hex adjustment screw: Spanner 4 Clockwise rotation to increase pressure
Q	Differential pressure regulator countersunk hex adjustment screw: spanner 4 Clockwise rotation to increase differential pressure
1	Proportional flow control valve: D4E-070TC - D4E-100TC
2	Proportional pressure control valve: CRE3 - CRE5
3	Safety pressure relief valve
4	Delivery port SAE 6000 flange 1" for VPPM-046 1 1/4" for VPPM-073



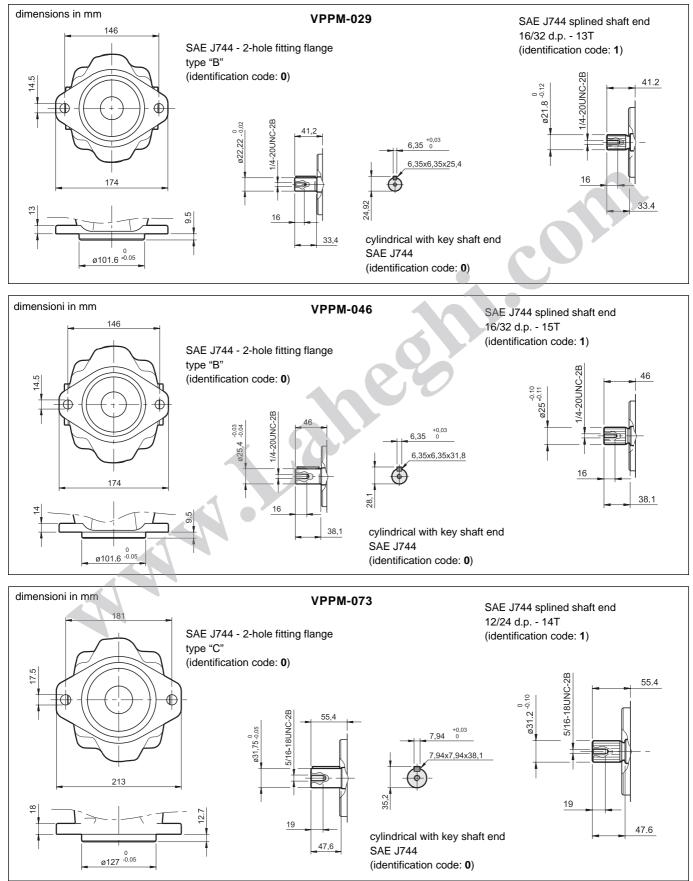
16 100/104 ED



16 - VPPM-029 OVERALL AND MOUNTING DIMENSIONS



17 - VPPM-046 OVERALL AND MOUNTING DIMENSIONS



18 - VPPM-073 OVERALL AND MOUNTING DIMENSIONS

19 - OVERALL DIMENSIONS FOR FLANGES AND SHAFTS TYPE SAE J744

20 - INSTALLATION

- The VPPM pumps can be installed both in a horizontal and vertical position, with the shaft in an upward position. N.B.: The drainage port has to be oriented so that the oil level inside the pump body is never lower than 3/4 of its volume (according to the installation use the D1 or D2 drainage ports).

Installation below the oil reservoir is suggested. As for an installation above the oil level, check that the min. suction pressure is not lower than -0.2 bars (relative). If a low noise emission level is required, the installation inside the tank is suggested.
In case of an installation inside the tank, with an oil level which does not grant complete pump submersion, it is suggested that the drain tube is adjusted so that the pump higher bearing can be always lubricated.

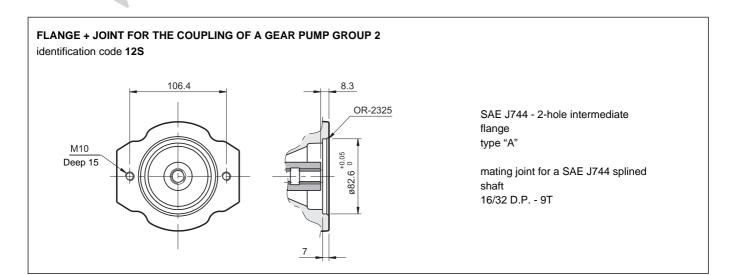
- Before starting, the pump body has to be filled with the fluid.

- It is necessary to vent the air from the delivery connection before operating it the first time. The pump start up, especially at a cold temperature, should occur with the plant at minimum pressure.
- -The suction tube has to be suitably sized so that the suction pressure is never lower than -0.2 bar (relative). Bends or restrictions or an excessive tube length could further decrease the value of the suction pressure with a following increase in the noise emissions and a decrease in the pump lifetime.

- The drainage tube has to be sized so that the pressure inside the pump body is always lower than 0.5 bars (relative), even during the dynamic change and flow rate phases.

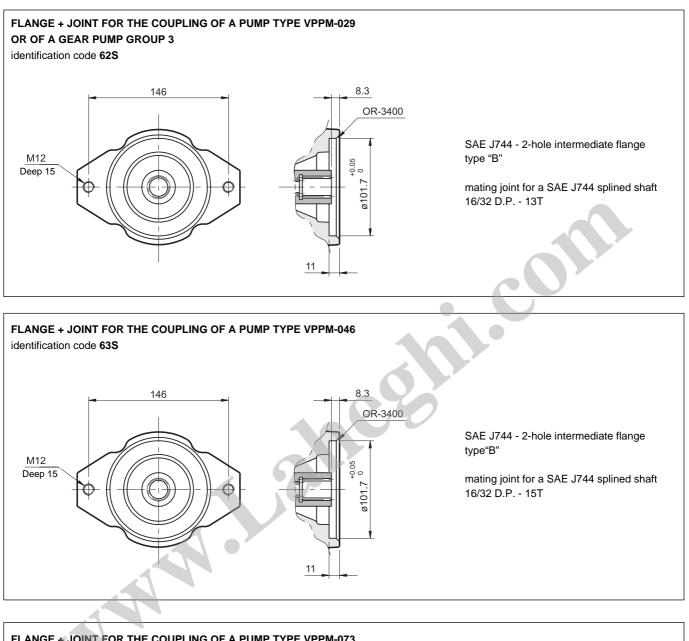
The drainage tube has to unload inside the tank far from the suction area.

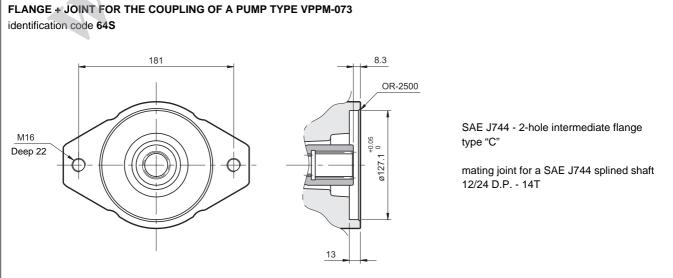
- No check valves allowed on the suction line
- The motor-pump connection must be carried out directly with a flexible coupling. Radial and axial loads have to be lower than the values specified in the table "Technical specifications".
- As for details and the installation of filter elements, see par. 2.3.


21 - THROUGH OUTPUT SHAFT

The VPPM pumps can be supplied with a through output shaft, which allows coupling with other pump models.

N.B.: The pumps with a through output shaft are supplied with an intermediate 2-hole flange type SAE J744 - and with a mating joint for splined shaft type SAE J744.


In this version the mechanical adjustment for the min. and max. displacement are not available.


- As for identification see par. 1 "Identification code".
- For the pump overall dimensions (intermediate flange included) see par. 19 "Coupled pumps".

22 - MULTIPLE PUMPS

The possibility to couple several pumps makes it possible to create multi-flow groups with independent hydraulic circuits. While sizing coupled pumps, it is necessary to make reference to the following conditions:

- The coupling can be carried out between pumps with the same dimensions or to a size of decreasing order.

- The max. rotation speed is determined by the pump with the lowest speed.
- The values of the max. applicabe torque can not be exceeded.

22.1 - Max. applicable torque

600 · η tot

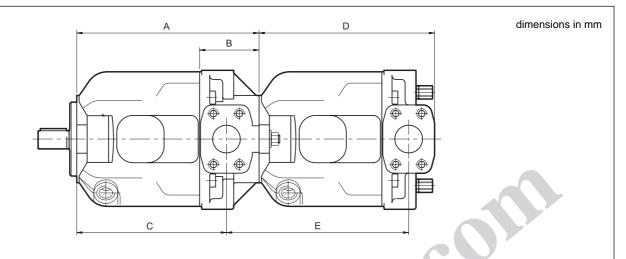
The input torque (M) for each pump is given by the following ratio:

$M = \frac{9550 \cdot N}{n} = [Nm]$	n = rotation speed [rev/min]
	Q = flow rate [l/min]
where the absorbed power (N) is given by:	Δp = differential pressure between the pump suction and delivery [bar]
$N = \frac{Q \cdot \Delta p}{1 - 1} = [kW]$	η tot = total efficiency (obtainable from the diagrams in par. 4-5-6)

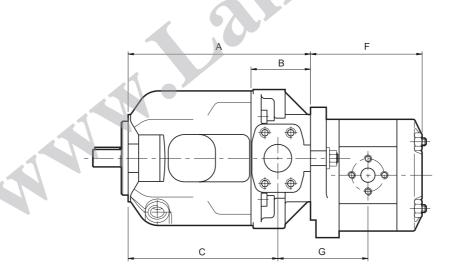
or it can be obtained from the diagrams ABSORBED POWER (see par. 4-5-6).

If several pumps are coupled, the torque of each single pump has to be added to the torque of subsequent pumps when they are loaded simultaneously.

The obtained torque value for each pump has to be lower than the value specified in the below table:

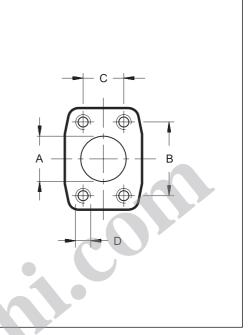

The maximum transmissible torque for those pumps with a through output shaft is determined by the coupling used for the transmission. If the obtained torque values are higher than the ones stated in the table, it is necessary to reduce the working pressure value or to replace the overloaded pump with a pump suitable to bear the required torque.

		· · · · · · · · · · · · · · · · · · ·						
SIZE OF THE PUMP WITH A THROUGH OUTPUT SHAFT	MAX. TORC APPLICAB THE SHAF FRONT PU	LE TO T OF THE				ABLE TORQUE [usly to the front pu		
	cylindrical shaft	cylindrical	splined shaft		PUMP I	MODEL TO BE C	OUPLED	
	ISO 3019/2	SAEJ744	SAE J744	EXTERNAL	EXTERNAL			
	(cod. 5)	(cod. 0)	(cod.1)	GEAR GR. 2	GEAR GR. 3	VPPM-029	VPPM-046	VPPM- 073
VPPM-029	160	155	190	100	135	135	-	-
VPPM-046	245	220	330	135	220	190	220	-
VPPM-073	400	400	620	135	330	190	330	400



23- OVERALL DIMENSIONS FOR COUPLED PUMPS

FRONT						RE	EAR PU	IMP							
PUMP		V	PPM-02	9			V	PPM-04	46			Ο ν	/PPM-0	73	
	A	в	С	D	Е	A	В	с	D	Е	A	в	С	D	Е
VPPM-029	222	77	183	213	222	-	-	-	5	-	-	-	-	-	-
VPPM-046	251	82	206	213	220	251	82	206	242	251	-	-	-	-	-
VPPM-073	291	99	235	213	226	291	99	235	242	249	296	104	235	276	296


FRONT				REA	R PUMP					
PUMP	EX	ΓERNA	L GEA	R GR.2		EX	TERNA	L GEA	R GR. 3	
	A	В	с	F	G	A	В	С	F	G
VPPM-029	222	77	183	99÷121	86÷97	-	-	-	-	-
VPPM-046	251	82	206	99÷121	85÷96	251	82	206	132÷147	103÷110
VPPM-073	291	99	235	99÷121	91÷102	291	99	235	132 : 147	109÷116

NOTE: The F and G values in the table make reference to the dimensions of the gear pumps according to the availabe min. and max. displacement range. For further details apply to our Technical department.

24 - SUCTION AND DELIVERY PORTS DIMENSIONS FOR SAE FLANGE WITH METRIC BOLTS

	SUCTION	PORT : '	'IN" (SA	AE 3000)
Code	Nominal size	A mm	B mm	C mm	D Threading and depth (mm)
VPPM-029	1 1/4"	32	58,7	30,2	M10 x 28
VPPM-046	1 1/2"	38,1	70	35,7	M12 x 26
VPPM-073	2"	50,8	77,8	43	M12 x 25

	DELIVERY	PORT : '	OUT" (SAE 600	00)
Code	Nominal size	A mm	B mm	C mm	D Threading and depth (mm)
VPPM-029	3/4"	19	50,8	23,8	M10 x 24
VPPM-046	1"	25,4	57,1	27,7	M12 x 20
VPPM-073	1 1/4"	32	66,7	31,7	M14 x 23

25 - CONNECTION FLANGES

			 			1		↓ F t					• - H	dimensions ir
				æ E -æ										
	Flange code	Flange description	pmax [bar]	ØA	ØВ	С	D	E	F	G	Н	L	1 4 bolts	2
00					ØB 32	C 21	D 41	E 22	F 30,2	G 58,7	H 68	L 79		2 OR 4150
E 3000	code	description	[bar]	ØA									4 bolts	
SAE 3000	code 0610720	description SAE - 1 1/4"	[bar] 280	ØA 1 1/4" BSP	32	21	41	22	30,2	58,7	68	79	4 bolts M10 x 35	OR 4150
	code 0610720 0610714 0610721	description SAE - 1 1/4" SAE - 1 1/2" SAE - 2"	[bar] 280 210 210	ØA 1 1/4" BSP 1 1/2" BSP 2" BSP	32 38 51	21 25 25	41 45 45	22 24 30	30,2 35,7 43	58,7 70 77,8	68 78 90	79 94 102	4 bolts M10 x 35 M12 x 45 M12 x 45	OR 4150 OR 4187 OR 4225
	code 0610720 0610714	description SAE - 1 1/4" SAE - 1 1/2"	[bar] 280 210	ØA 1 1/4" BSP 1 1/2" BSP	32 38	21 25	41 45	22 24	30,2 35,7	58,7 70	68 78	79 94	4 bolts M10 x 35 M12 x 45	OR 4150 OR 4187
SAE 6000 SAE 3000	code 0610720 0610714 0610721	description SAE - 1 1/4" SAE - 1 1/2" SAE - 2"	[bar] 280 210 210	ØA 1 1/4" BSP 1 1/2" BSP 2" BSP	32 38 51	21 25 25	41 45 45	22 24 30	30,2 35,7 43	58,7 70 77,8	68 78 90	79 94 102	4 bolts M10 x 35 M12 x 45 M12 x 45	OR 4150 OR 4187 OR 4225

DUPLOMATIC OLEODINAMICA SpA

20025 LEGNANO (MI) - P.le Bozzi, 1 / Via Edison Tel. 0331/472111 - Fax 0331/548328